Respuesta :
Answer:
[tex]M=6.4243\ g[/tex]
Explanation:
Given:
- mass of deflated balloon, [tex]m_b=2.9\ g=0.0029\ kg[/tex]
- density of helium, [tex]\rho_h=0.180\ kg.m^{-3}[/tex]
- volume of inflation, [tex]V=8400\ cm^3=0.0084\ m^3[/tex]
- density of air, [tex]\rho_a=1.29\ kg.m^{-3}[/tex]
To stop this balloon from rising up we need to counter the buoyant force.
mass of balloon after inflation:
[tex]m=m_h+m_b[/tex]
[tex]m=0.0084\times 0.180+0.0029[/tex]
[tex]m=0.004412\ kg[/tex]
Now the density of inflated balloon:
[tex]\rho_b=\frac{m}{V}[/tex]
[tex]\rho_b=\frac{0.004412}{0.0084}[/tex]
[tex]\rho_b=0.5252\ kg.m^{-3}[/tex]
Now the buoyant force on balloon
[tex]F_B=V(\rho_a-\rho_b).g[/tex]
[tex]F_B=0.0084(1.29-0.5252)\times 9.8[/tex]
[tex]F_B=0.063\ N[/tex]
∴Mass to be hung:
[tex]M=\frac{F_B}{g}[/tex]
[tex]M=0.00642432\ kg[/tex]
[tex]M=6.4243\ g[/tex]